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The Center

The mission of the Center for Research on Elementary and Ivfiddle Schools is to produceuseful knowledge about how elementary and middle schools can foster growth in students'learning and development, to develop and evaluate practical methods fix improving the effec-tiverms of elementary and middle schools based tut existing and new research findings, and todevelop and evaluate specific strategies to help schools implencnt effective research-basedschool and classroom practices.

The Center conducts its research in three program areas: (1) Elementary Schools, (2)
Middle Schools, and (3) School Improvement.

The Elemental), SchoolProgram

This program works fiom a strong existing research base to develop, evaluate, and dissemi-nate effective elementary school and classroom practices; synthesizes current knowledge; andanalyzes survey and descriptive data to expand the knowledge base in effective elementaryeducation.

The Middle School Program

This program's research links current knowledge about early adolescence as a stage ofhuman development to school organization and classroom policies and practices for effectivemiddle schools. The major task is to establish a research base to identify specific problem areasand promising practices in middle schools that will contribute to effective policy decisions andthe development of effect ie school and classroom practices.

School Improvement Program

This program focuses on improving the organizational performance of schools in adoptingand adapting innovations and developing school capacity for change.

This report describes a nationwide field experiment conducted on the use of computers in
mathematics classrooms in grades five through eight.



Abstract

This report presents the results of a two-year nationwide field experiment designed to

provide credible evidence about the effects of using computers in math instruction in grades five

through eight. Ninety-six classes (48 pairs of "computer" and "traditional" classes) taught by 56

teachers in 31 schools from 25 districts in 16 states participated in the first year of the study;

eleven teachers from nine schools employed the same "teacher-control" design through the

second year of the experiment. The overall effect sizes found at the end of the first year on five

measures of math achievement, although generally above zero for the methodologically superior

implementations, were not substantially above zero for the study population as a whole, except

for the estimations subtest.



Since the mid-1980's, computers in elementary and middle grade schools have functioned to a

large extent as a medium for student practice in the skills and concepts of basic mathematics and logic.

Nearly one-half of American elementary and middle-grades students use computers in their school

mathematics activities (Martinez and Mead, 1988), and every week perhaps three to four million

youngsters are engaged in answering math problems posed to them on computer screens. Yet, in spite

of this widespread teaching practice, we really do not know (a) whether and (b) under what conditions

students have learned mote by practicing math and logic skills with the computer programs that their

teachers provided than if their math lessons had been totally without computer use or had they been

exposed to using computers in mathematics in very different ways.

Although it is true that there is a growing research literature about the use of computers in

mathematics, I would maintain that that literatme is inadequate to questions about the effectiveness of

typical practice. In "computers in basic mathematics," as in other areas of computer-assisted-instruction,

three types of research dominate:

Informal, formative assessments of learning, usually in conjunction with software
development. Studies accompanying development projects often incorporate very sensitive

measures of learning and performance and are valuable for informing and improving the software

and curriculum development that they accompany. However, the questions asked by this type

of research tend to be of the nature, "Can computer-based activities enable students to gain

certain competencies or improve their capacities?" rather than the question, "Do such activities

typically result in those improvements?" These development projects often involve innovative

ways of using computers and incorporate theoretically rich ideas about what students need to do

to truly understand concepts and relationships. But they typically proceed under the assumption

that students will rol attain these competencies by traditional instruction, and therefore they do
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not collect data comparing achievement by students experiencing the computer-based approach

with learning by other students experiencing other teaching approaches, or by the same students

during other time intervals. Moreover, the careful site selection and extentive monitoring that

often occurs during development phases of instructional programs makes it unclear whether the

program might be effective under more typical conditions.

Large-scale (sometimes "system-wide") evaluations of a recently implemented computer-

based instructional program, usually involving basic skills drill-and-practice. Most

evaluations of system-wide computer-based interventions are planned gml the implementation

of the program. As a result, these studies are typically left in a weak position with respect to the

inferences that they are trying to make. Some of these evaluations are made based only on

changes in standardized test score percentiles "pre-" and "post-" treatment for the same children.

Particularly useless are non-control-group studies that use fall and spring test score comparisons

because there is substantial evidence of inadequate norming by test publishers resulting in typical

fall-to-spring gains of 8 NM points regardless of the students' instructional experiences (Gabriel,

et al, 1985). Other system-wide evaluations examine differences in achievement between

successive grade-cohorts (the "pre-implementation" cohort and the "post-implementation" cohort)

or between schools participating in the program and "comparable" schools not participating.

These designs rule out some threats to inappropriate conclusions but most of these studies

inadequately measure other factors that might also account for differences in student outcomes

between the schools or school-years in which the computer approach is used versus those where

it is not useddifferences in teacher quality, clientele, socio-emotional climate, test preparation

activities, and curricular program. Selective publicity to the most favorable statistics, grade

levels, and implementations also results from our reliance on vendor-reported data as well as

differential reporting of the more favorable vs. the less favorable district-produced evaluations.
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'The third type of research data common in the computer-based-inmuction literal= consists of

small-scale comparison studies, often involving only a banditti of teachers in one school,

often encompassing just several days ow weeks of "treatment," and more often than not

lacking in strict experimental control. Like the formative studies and the system-wide post-hoc

evaluadons, many small-scale comparison studies do not employ random assignment to treatments

so that teachers using the computer-based approach may not only be different individuals than

the teachers of comparison classes but possibly different in their teaching effectiveness. Students

enrolled in experimental and control classes may be assigned non-randomly and be different in

relevant ways (e.g., starting competence). And sometimes (and this is often difficult to know

from the sketchy information provided in published reports) experimental and control classes

spend unequal amounts of time on the subject-matter tested (i.e., the experiment is an "add-on"

activity). In spite of their frequent design deficiencies, these studies purport to draw conclusions

about differences in student learning outcomes that resull from the computer-based approach

studied.

The value of these small-scale studies depends largely on the strength of their internal validity,

but even the best designed studies have provided evidence that computer-based interventions can work,

but for two major reasons they have not told us what works when and whether these approaches

generally do work.

Generalizability. Classroom environments in which computer software is used differ sharply

from one to another. Far too often people improperly infer that results of a study done with a

few teachers in a narrow range of circumstances are predictive of the kinds of results that will

occur under different and possibly less favorable circumstances. Teachers differ in how well they

can implement new approaches to their subject-matter. Similarly, classrooms vary in the amount

of support and assistance that students require for attending to learning tasks and actually
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learning. And the computer experiences themselves vary from one setting to another, even when

the same type of computer software is in use and certainly when diffetent software is used.

When well-designed but small-scale studies obtain different conclusions about the effectiveness

of the computer-based approach that they studiedas they almost always dothese variations are

partly due to the random variation that occurs among small samples of students and teachers and

partly due to the systematic variation that exists between one circumstance and another. Even

the best-designed small studies suffer from both an inability to identify with confidence outcomes

that have pnictical significance (because results that are important for policy purposes may still

not be statistically significant) and an inability to identify the range of circumstances within

which benefits are likely to occur.

Germaneness. Many of these studies are reports of short-term interventions. Studies of short

duration may indicate the value of using one program for teaching one concept or skill, but do

not address the question of whether current school investments in using computers mom broadly

for instniction in one or more academic subjects aze paying off. It may be that, in a particular

subject domain, only topic-specific, occasional uses of computers are worthwhile. Although it

is important to know which specific uses actually work and are better than existing alternatives,

schools also need to know about the value of longer term, mote integral uses of computer

software which are more likely to justify and support major investments of computer hardware

than the occasional, specialized Use.

Many mathematics educators have argued that, in elementary and middle-grade mathematics, the

germaneness issue is not answered merely by studying long-term (e.g., full year) interventions rather than

isolated single-topic units. They argue that the mathematics curriculum itself is hardly germane to the

most important numerical and symbol manipulation competencies that adults should havefor example,

that instruction is overburdened with teaching manual algorithmic skills for which students now have
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other tools (e.g., hand calculators). However, regardless of tin merits of those curriculum arguments,

school administrators who are answerable to many interests and publics that do not accept such

arguments need to know whether their Use of computers to support instruction in their existing

mathematics curriculum is a more effective a way of using their canputer resources than other ways

that students and teachers might use school computers. Therefore, it is important that researchers P.Liiress

the general question of "what effects are 'typical' computer-based instrucdonal programs in mathematics

having on students and under what circumstances," even when answering that question does not dire;t1v

tell us about the potential value of using computers in other ways that might support other curricular

goals.

In any event, to provide valid conclusions about the consequences of using computer approaches

for any given curricula goal, it is essential that such research have high internal validity, incorporating

comparisons with alternative instructional approaches, control over "teacher effects," and randomized

designs. And to understand the limits of applicability of those conclusions, it is important that the

research be conducted over a large and representative domain of settings.

Meta-Analyses. One approach to providing data about the mean and range of effects of using computers

has been to undertake secondary re-analyses of existing small-scale research. Often these studies are

in the form of a meta-analysis, imposing a common statistical metric on diversely reported research and

being as inclusive as possible in an effort to narrow the confidence limits of the estimated mean effect.

The most recent meta-analysis of computer-based instructional research, the fwst to really focus on

microcomPuter-based interventions, was done by Roblyer, Castine, and King (1988). These researchers

examined roughly 200 studies published or reported between 1980 and 1988 and included 82 of those

studies, about one-half dissertations and one-half published articles, in their meta-analysis. (Studies were

excluded that failed to meet certain minimal requirements such as the presence of a comparison group

and sufficient statistical data to be able to report effects in a common effect-size metric.)
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Many of the 82 studies included in the meta-analysis have limited value for understanding the

effects of computer-Wed approaches to instruction. Studies of a single pair of classes were particularly

common, and others were studies of brief durations and limited computer nutmeat. One-third of the

studies in this meta-analysis were based on fewer than 20 students per treatment (if treatments were

taught by a single teacher) or fewer than 35 students per treatment (if experimental and control teachers

were different). About 20% of die studies involved a treats= period of fewer than 8 weeks and fewer

than 10 hours total instructional time.

Moreover, the great diversity of subject-matter, grade levels, and types of software included in

this aggregation of studies limits the utility of a concept of "mean effect size." Just as one can study

too narrow a range of implementations to be able to make valid generalizations across different school

settings, one can mix too much diversity into a single pot. For the purpose of pmviding policy-relevant

data for schools and school districts that are considering alternative ways to use computers, it seems

wrong to combine studies of math C.A.I. in elementary school, writing actitivies in high school, and

logic and problem-solving puules in the middle grades.

In Robylyer, Castine, and King, the number of longer-term studies of at least several classes of

students in any one age range, for any one subject-matter, and using any one type of software is quite

small. For example, 26 studies covered students mainly in grades 5 through 8. Of those, 17 passed the

minimal size and duration criteria discussed in the previous paragraph. But among those 17 studies were

8 studies of mathematics using C.A.I., 4 studies of problem-solving using Logo or various logic practice

puzzles. 6 studies of reading C.A.I., and 5 studies of language arts CA.I.

Requirements for internal validity further reduce the number of studies of any one subject-matter

substantially. Of the eight studies of middle grade mathematics, for example, only one (a small study

of two classes per treatment) involved random assignment of students to computer and non-computer



classes, only that study and one other used a design where the same teacher taught both the "computa"

and "non-computer" classes, and only two other studies may have partially compensated for non-random

assignment and teacher differences between neatrotnts by being very large (e.g., 300 students per

treatment or mote).

And each of these studies was conducted under diffetent conditions, collecting different data

about student achievement and implementation characteristics, by different researchers.

Fkld Experiment at a Distance. Another appmach to developing an understanding about the

effectiveness of typical current practices of using computer-based instruction under a mcdestly limited

byt jamgmtnguin set of conditions is to conduct simultaneous experiments in a great many schools,

employing a high-quality research design, and collecting identical data from site to site on many of the

conditional variables that might affect the experiment's outcomes. Of course, research designs involving

randomized assignment are difficult to implement because many other conflicting considerations affect

the willingness and ability of schools to adapt to researchers' needs and preferences. For example, many

schools with existing computer-based programs feel obliged to give students access to their program.

However, not every school finds the tesearch requirements for experimental designs impossible to meet.

Many teachers and administrators, for one reason or another, are willing to make necessary adjustments

in their prior scheduling and assignment practices to allow high-quality research designs to occur. The

trick is to identify those research-amenable schools and develop a model for conducting research that

permits their involvement, whereever they might be located.

For this research project, our goal was to recruit from the tens of thousands of schools and

hundreds of thousands of classrooms around the country about 50 pairs of classes to participate in the

first of several planned "National Field Studies of Instructional Uses of School Computers." This study
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was to focus rmi mathematics instmction in grades 5 thtough 8 in both elementary and mWdle/junior-high

school environnrnts. Participants had to meet several requirements: sufficient computer hardware so

that a computer-using mathematics class could have regular access to at least one computer for every

four students in the class; sufficient computer software for snulents to receive a substantial computer

"neatment" during dm year (e.g., 30 hours ofcomputer time per child); computer knowledgeable teachers

with two years of annputer-use experience; an alternative, "traditional" instrwtional approach that would

have to be applied in one-half of the participating classes and would have to address the same

curriculum; and some form of randomized or matched assignment of students to participating pairs of

classes to insure equal ability classes--classes that would, in turn, be randomly assigned to the

"computer" or "traditional" treatment. Where teachers were responsible for several sections of same

grade-same level mathematics, each teacher could act as his or her own control; where teachers taught

self-contained classes, two panicipating (and thus computer-knowledgeable) teachers would be randomly

assigned to a treatment. Students in the "traditional" classes were free to use computers for activities

outside of mathematics. But in mathematics, the distinction between the computer and traditional

approaches was to be maintained from September, 1987 to May. 1988. The selection of computer

software and the fit between software and the curriculum was left up to each school. This was to be

a study of the effects of computer use as actually practiced across the United States under reasonably

rich but not atypical circumstances during the 1987-88 school year.

The researcher's roleaccomplished largely by telephone and mail communicationwas to obtain

the involvement of the best combination of schools and teachers to study the question; mandate the

experimental design, assuring the appropriate mixture of forced equivalence and randomization in student

and teacher assignments; provide appropriate pre- and posnests; and collect data from teachers and

students about their background and about the details of their mathematics class experience during the

year.
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We recruited schools primarily through announcements in edwation publications and direct mail

requests sent to march directors, other administnucal in school systems, a representative national

sample of school-level administrators, and 40 publishers of educational software. Sixty-eight school

districts or individual schools indicated dwir willingness to participate and ability to conform to the

research design, and 27 of those "applications" were accepted. Altogether 96 classes (48 pairs of

"computer" and "traditional" classes), taught by 56 teachers in 31 schools from 25 districts in 16 states

participated in the first year of the study. Each school had between 2 and 8 participating classes. The

classes were distributed across grade five (26 classes), grade six (30), grade seven (24), and grade eight

(16). Two pairs were in parochial schools; the remainder, public schools.

The schools in the study include a nationwide span, but a slight majority were located on the East

Coast. One was in New England. Thee were in the New York metropolitan area (2 in Brooklyn). Five

were in Pennsylvania or Maryland (two of those in Metropolitan areas). Two were in Greenville, N.C.,

a relatively poor community of under 50,000. Five schools were located in Florida, spread out among

the Tampa area, the less wealthy northern part of the state, and Palm Beach. Two schools were in

Kentucky (one of those on a military installation), and one was in Texas, near Dallas. Seven schools

were in the Midwest, primarily in small communities or suburban areas and in the Iowa cities of Des ,

Moines and Davenport. The Pueblo, Colorado area had two participating schools, one school was near

Portland, Oregon, and two schools from California were in the study, one in a small town north of Santa

Barbara and one in suburban Los Angeles.

After the conclusion of the first year, we encouraged schools that could employ the "same-

teacher-control" design to participate in a second year of the experiment, and eleven teachers from nine

schools agreed to do this. The second year of data includes five 5th grade, four 6th grade, and one 7th

grade pairs. Data from the other 7th grade pair of classes was not analyzed because of technical

problems.
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In selecting schools to participate from among those tecmited, we had two basic critexia: (1) that

the conditions of the study seemed like they could be fulfilled (i.e., that the experimental design could

be implemented, that the teachers had computer experience, and that there was sufficient "good-quality"

hardware and software available and access time to the equipment); and (2) that the overall study

population had a representative balance in terms of geographic location, socio-economic context, grade

level, and types of hardware and software in use. In addition, consideration was given to situations that

could plovide the strangest design (same-teacher control ratlwr than randomly assigning teachers to

treatments) and to proximity to the researcher's location.

With only a three-month recruitment period and a goal of having roughly 50 pairs of classes

across four grade levels, it was not possible to produce a set of sites that was satisfactory on all

accounts. In particular, we were dissatisfied with the small number of large-city school districts we

could incorporate (one) and with the relatively few schools and classes with many black students.

Blacks numbeted under 10% of the emoUment in 22 of the 31 schools. At five of the schools, blacks

were at least 25% of the enrollment; but only one had a majority of black students. Other minority

groups weze better represented. Hispanics were a majority in two schools, and Asian-Americans

constituted one-third of the population at another school. Altogether, minority groups were 20% or more

of the enrollment at one-third of the schools in the study.

Socio-economic representativeness was reasonably satisfactory. At only five schools was

enrollment largely upper-middle class. At those schools, the principal reported that nearly all parents

were professionals or white-collar workers with a majority of families earning more than $30,000 per

year. But the other 26 schools constituted a more typical blue- and white-collar heterogeneous mixture.

In none of the others were white-collar parents clearly in the majority and in all but one the estimated

high-income proportion was under 50 percent. Two kinds of communities, though, were poorly

represented in the study--only two schools were in very low-income areas with many families receiving



financial assistance, and no schools were in rural =as enrolling mainly children from farming families.

The classes participating in the study constituted a broad mixt= of student ability levels within

each school's population. In year one, fifteen pairs were heterogeneous mixtures of their school's grade

level population; 10 more represented the middle-range of students in the school, but not the upper- or

lower-thirds; eight represented the school's "upper-third" (one including the middle as well); and fifteen

represented mainly "below-average" or "bottom-third" students or a range including middle and bottom-

thirds. (See Table 1.) Seventeen pairs were in elementary schools, 27 pairs in middle or junior-high

schools; and four in K-8 schools. Sixth-grade classes were split among all three types.

The one other aspect of the study population that fell short of our goals was in teacher experience

in using computers for mathematics. Although most of the teachers recruited had previously used

computers in some way (generally to do word processing or teach computer literacy), only about half

of them had used computers in mathematics teaching and only one-quarter had done so on a regular

(more than weekly) basis. Thus, one important characteristic of the study's first year is that it was an

examination of student achievement gains during the implementation year of an instructional program.

One major purpose of the second year's data collection was to determine whether effects were different

in a setting that would be regarded by participants as being more routine.

On the other hand, we exceeded our initial expectations in terms of recruiting schools able to

establish the highest quality research designs (student-level randomization, same-teacher control) and

having a very favorable computer-student ratio. The ideal design of randomized assignment of individual

students to "computer" and "traditional" treatment classes was accomplished in about one-third (11) of

the schools participating in the study. At all of the other sites, we came very close to approximating this

ideal design. The most common design, for example, (at 14 schools) involved randomized assignment



of classes to treatments, with classroom sturknt composition being determined locally but based on a

systematically balanced or random assignment procedure, as certified by local school personnel. At two

schools, adja:ently ranked homogeneously grouped classes were randomly assigned to treatments. At

the remaining four schools, because of limitations on the availability of computer facilities, the class

assigned to the computer treatment was fixed. At two of those, students were randomly assigned to

classes by the researcher; at the other two, local procedures were claimed to produce equal ability

classes.

In 73% of the pairs of classes in the study's first year, the same teacher taught both a

"traditional" and a "computer" class categorized as "same ability" either by random assignment or by

a local randomization or matching procedure. In most of the remaining pairs of classes, two eligible

teachers ("computer knowledgeable") taught self-contained classes of same-ability students, one teacher

(randomly selected) teaching mathematics using computcrs, the other teacher using traditional

instructional media. In the (4) remaining pairs, teachers taught both "computer" and "traditional" classes

but of different ability levels; formally, each teacher was paired twice with another teacher from the

same school who taught two classes at the same level but using the opposite "treatment." In year two,

all pairs involved the same teacher teaching matched-ability computer and traditional classes.

(The superiority of same-teacher controls over random assignments to treatment between teacher

volunteers is suggested by the fact that same-teacher pairs had effect sizes whose standard deviations

were much smaller than those for "different teacher" pairs. That is, pairs where teacher eft. ects were

added to treatment effects produced much larger differences in mean achievement between "computer"

and "traditional" class. The standard deviation of effect sizes for same-teacher pairs was, on average.

only 69% as large as for different-teacher pairs across the four achievement variables used.)
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Except for one school, computer-using classes in the study had the intended minimum of one

computer available for every four students in the class. Many of the classes had substantially more

computer resources available. The median number of computers simultaneously accessible to computer-

using teachers in the study's first year was 16. The median class-size of computer-using classes was

23. All but five classes had no worse than a 2 to 1 ratio of students to computers. During the second

year, all classes had at least a 2 to 1 ratio or better.

All participating schools used microcomputers rather than mini-computer systems. Only 8

schools used computers on a local-area network, and only one school (2 pairs of classes each year) used

an individualized, computer-managed, "integrated instructional system." At most sites, teachers or

students had to load programs into each computer's disks individually. Twenty-three of the 31 schools

used software that ran on Apple II series computers; nine used software for I.B.M. and compatible

computers. (Two schools used both types of machines.) One school used Texas Instruments carnidge

software along with its Apples. And one school used networked Radio Shack TRS-80 hardware and

software.

The mathematics that was taught using computers and the emphasis on computation, concepts,

applications, and general problem-solving skills varied from grade to grade, teacher to teacher, and site

to site. Across the two years of the study, the most commonly used software products were the two

series from Milliken Publishing Co. (Milliken Math and WordMath, together constituting approximately

19% of all software used), MECC software (13%), IBM Math Concepts and Math Practice series (12%),

Sunburst problem-solving software (7%), and the managed network-based system from E.S.C. (now

Jostens Learning Corp., 6%). Other software that was used by three or more classes for a substantial

portion of their computer time included the Mathematics Curriculum Project software from the

University of Northern Iowa (U.N.I.), Scholastic Software ("Math Shop"), S.R.A. Math, Softwriters'

Skills Bank, and Educational Activities software. The single diskette most widely used across the classes



in the stmly was MECC's "Number Munchers." Althcmgh most classes used primarily drill-and-practice

programs, pmgrams such as U.N.1.'s Math Curriculum Project and the Jostens E.S.C. rogram had

substantial tutcaial (explanation and demonstration) functions. Problem-solving tasks built into programs

such as Sunburst's Factory, Survival Math, and King's Rule; Scholastic's Math Shop; and the Math

Activities Courseware series from Houghton-Mifflin wen each part of the computer experience at several

sites.

Although nearly every "computer" class had students use computers at least once each week,

variations among sites in the amount of time students used computers over the course of the whool year

were substantial. Some classes had only a single 30 minute period per week on the computer. One

class, at the other extreme, used computers for an hour nearly every day during the school year. On the

average, students spent 36 hours during the school year on computer-based mathematics activity. Figure

I- presents a cumulative frequency distribution of computer time for individual students across the 48

computer-using classes in the first year of the study.

Since students spend roughly fifty minutes per day on mathematics, the computer-specific activity

on the average amounted to only 25% to 30% of their mathematics experience. Still, the amount of

computer time each student in these classes had is substantially more than students in most computer-

using middle-grade mathematics classes in the country have. (Unpublished data from a national 1989

survey conducted by the author indicate that a student in a typical computer-using secondary

mahematics class uses computers for about 30 minutes per week, or under 20 hours per year.)

Students in paired traditional classes spent the same amount of time learning mathemati.cs as

students in the cr mputtr classes. In some of the pairs, traditional classes used the time that their paired

computer class had for computers on activities and lessons that the computer class did not have, such

as group project3 or problem-solving tasks. In other pairs, the traditional classes just spent more time
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on the same assignments (drills, lessons, seatwak) as the computer class. Overall, in exchange for their

computer tinz, the computer classes spent an estiniated 40% less time on small group activities (which

was, however, a small proportion in either "computer" or "traditional" classes), 33% less time on class

drill, and 25% less time on whole class lessons and seatwork than did the traditional classes.

The data collected during the fust year included national standazdized mathematics achievement

test data, both pre- and posttests; daily logs (20% sample of days) from teachers in both ireamient groups

concerning the class activities; the set of homework and classwork assignments and quizzes and tests

given to students throughout the year (a copy of each class' textbook was also provided); questionnaire

data from trachers and students at the beginning and end of the year; a brief experimenter-made brief

posttest of estimation skills and mental mathematics; and 47 experimenter-made, curriculum-specific

posttests, each one based on the instructional content in one particular pair of classes, developed from

the assignment and test materials supplied by the teachers throughout the year and the computer

programs used by those students. During the second year, the same pre- and posnests and the spring

student and teacher questionnaires were fielded as in the first year, but the teachers were asked to give

less detailed weekly reports about computer use patterns.

During the first year, five schools (13 pairs ofclasses) were visited, but because the research sites

were spread widely throughout the country, we relied on the periodic self-reports described in the

previous paragraph to provide systematic data about how each site accomplished instruction in computer

and traditional classes during the year. And because no researcher was on site, it was necessary te rely

on teacher and student written feedback to validate that the experiment was actively implemented.

The first year's weekly reports provided information nem ed tocreate curriculum-specific postmsts

for each pair of classes. In addition, the weekly reports and the spring questionnaires of students and

teachers enabled us to code curricular and organizational propemes of the computer and traditional
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instruction classes in the absence of on-site observation by a research team. And this data allowed us

to examine hypotheses about diffezent aspects of instructional practice that might help account for

differences between sites in the relative effectiveness ofcomputer-based approaches. About 90% of the

56 teachers participating during the first year sent back two irports each week for a 22-week period from

November through April.

Between the teachers' weekly reports and the spring questionnaizes completed by students--

providing their own estimates of how often they used computers for different subjects during the school

yearwe determined that during the first year of the study, a number of sites were not successful in

implementing a substantial computer experience and in maintaining a sharp distinction between computer

and traditional treatments. Eight teachers' computer class students reported minimal computer experience

during the year-15 hours or fewer, by our estimate. One of those classes had fewer computers (6) than

any other class in the study, in another case, an 8'th grade math teacher only used a few pieces of

software that he felt complemented what he was teaching. And in two of the others, cooperation by a

pair of experienced math teachers was quite grudging in that their participation was imposed on them

by their principal.

In eight other instances, at least one-quarter of the students in the traditional treatment classes

reported having used computers for math on more than five occasions. However, further inquiry

indicated that most of those occturences involved computer use gitm_tbrumgma when the teachers

were free to break down the &Unction between treatments. And in all of those cases where there was

some contamination, the computer class students reported substantially more computer experience during

the year than did the traditional class students. Altogether, the combination of relatively little computer

use (15 or under hours during the year) and indication of computer use by the traditional math class by

many of those same classes led us to drop eight pairs of first year classes from the data analysis. In the

classes studied during the second year, there was substantial computer use in all classes and less



evidence of contamination. So all 10 pairs from year two were used in the data analysis, bringing the

total number of pairs of classes studied to an even 50 (48 first year class-pairs minus 8 dropped plus 10

second-year class-pairs).

It should also be noted that adding the omitted eight pairs back into the analysis results in

absolutely no change in the mean value of effect statistics calculated for the main contrast between

experimental and control treatments. AU five major "effect size" measurements (see below) are changed

by a maximum of 0.01 units (posttest standard deviations) when the eight omitted pairs are included.

Moreover, the effect sizes measured on the pairs of classes omitted from the analysis are more clustered

around the zero point than were the effect sizes for the other pairs, suggesting that in fact there was less

distinction between "experimental" and "control" classes for those pairs. (And the 20 pairs evidencing

the most faithful implementation of the designmore than 30 hours of use; few reports of treatment

contaminationhad effect sizes that kat clustered around zero.)

Pretests and Posttests. Standartgzed tests. Although a common set of posttest measures was used at

all sites during both years of the study, in the first year of the study, different pittests were used in

different sites. For 54 of the 96 classes (in 19 of the 31 schools), students took the Stanford

Achievement Test (math computation and math applications parts) in September, and the tests were

scored by the researcher's staff. The remaining schools supplied the project with other pretest data--tests

taken during the previous Spring or the Fall of the study yearusing a variety of standardized tests

(CTBS (3 schools); CAT (2); Iowa (1); SRA (3); Metropolitan (2); and Stanford (2)). Fall pretest scores

were obtained from 4 schools, while scores from the previous Spring were used for students at 9 schools.

In year two, all sites used the researcher-scored Stanford tests. Posttests each year included the math

computation and applications sections of the Stanford. Math concepts were tested through the

curriculum-specific test prepared for each pair (see below).
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Tim fact that different schools supplied diffezent pretest data does not affect our ability to assess

achievernnt gains made in computer-treatment classes compared to traditional-tteatment classes. Each

class pair's effect size is calculated based on their particular differential pretest-controlled posttest scores

and therefore is independently measured from effect sizes in other schools. But it does impinge in two

ways to limit analysis. First, one cannot do careful studies of absolute achievement gain except in

schools using the Stanford pretest. For example, only in those schools can we examine whether the

effectiveness of the computer-based program is higher or lower for teachers whose traditional class

gained more or less than the average teacher's. (That is, do the computer programs in use help the

"better" teachers or the "not so successful" ones.) Also, absence of uniform pretest metrics limits our

ability to assess the value of the computer-treatments for categories of students grouped according to

previous academic performancethe "high achieving," "average achieving," or "lower achieving"

students. Since we have no easily obtained common standard on which to compare the prior academic

achievements of students in different schools, these categorizations must be treated as roughly made

divisions.

Curriculum-spelcific test. Besides the Stanford math computation and math applications posttests, three

researcher-constructed posttests were used: a curriculum-specific test, a test of fluency in mental

mathematics, and a test of estimation skills, the latter two combined in a single orally administered test.

Each curriculum-specific test was produced through an informal domain sampling proceduze that

included conceptual, computational, and problem-solving tasks contained in the teachers' textbook

assignments, worksheets, tests, and computer program assignments. The produced test attempted to

include a balance of problems given to each class in a pair but not the other, but it de-emphasized those

skills already covered on the standardized achievement posttests. Thus the tests focused as much as
possible on concepts and on applying math in real and complex situations, consistent with the need to

cover only what that teacher actually taught and to balance the experience of the computer class and the

traditional class in that pair.
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This test was ma multiple choiceinstead students were asked to supply their own answer, and

to use the supplkd test paper to do their calculations. Many questions had nveral parts or involved

students supplying several answers (e.g., circling all fractions among a set of 16 that wem greater than

one-half). Related and multiple-decision questions were combined so that the test was scored as a set

of between 15 and 22 "items" per test. Each item was allocated a number of points (most often "2" or

"3"; sometimes "1" or "4") based on an assessment of its complexity. Rules for partial credit were

established for answers to questions with multiple parts, steps, or decision-points. The researcher scored

all tests.

The content of tests varied substantially from pair to pair. Them were variations in attention to

higher-order concepts and complex applications and in the degree to which computer pmgrams formed

the source of test items. (Appendix A contains a sample of several of the curriculum-specific tests.)

On average, a test was composed of about 9 items from the computer programs used by the computer

class in the pair, about 5 items from the traditional class' special activities (where they did have tasks

that the computer class did not) and the remaining 4 items from tests or worksheets used by both classes

in a pair. The imbalance between computer and traditional class sources is partly due to the fact that

teachers of many pairs did not mport ay, assignments given only to the traditional class in the pair. In

other cases, the content of all traditional-class-only assignments was already tested on the Stanford

Achievement test. Also, in some caseswhere teachers emphasized mathematics computations or simple

single-step word problems in kat their traditional and computer classes or where the teacher did not

consistently provide weekly data about assignmentswe composed part of test with problem-solving

tasks or concept items from other pairs.

Teachers reported an "opportunity to learn" variable foreach test itemthat is, they indicated for

each test item which of their classes (computer, traditional, both, or neither) had been presented with

instruction for which that test item was appropriate. Excluding seven pairs whose teachers did not
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provide opportunity-to-learn data for both classes, the teachers indicated that the content of 80% of the

items had been covered in their classes. On average, the oppornmity-to-lcarn score was 5 percentage

points higher for computer classes than for traditional classes, indicating a slight bias in mst content

favoring the computer treatment. For part of the analysis, differential exposure to the test content

(between computer and traditional class of the same pair) and differential opportunity-to-learn were taken

into account in analyzing observed effect sizes.

During year two, instead of freshly deriving a test based on the new year's instruction and

materials. the same curriculum-specific posttest was given to the teacher's classes as was given in the

first year. Opportunity-to-learn measures for the second year were comparable to those during the first

year. averaging 83% for the 8 teachers responding, but with the mean for traditional classes still below

that for computer classes.

The curriculum-specific tests wert expected to be difficult--and they were. Even with panial

credit scoring, students in classes studied during the first year averaged only 36 percent on this test. Of

course, the tests varied substantially in how well students could answer the questions; students in one-

fourth of the pairs scored lower than 25%; students in 5 pairs scored over 50%. Overall, the low scores

provide evidence that mathematical problem-solving requiring fluency in dealing with numbers and

logical relationships is not successfully taught in most school classrooms. However, a discussion of the

substantive mathematics education issues mvealed by performance on these tests is reserved for a future

paper. In terms of the tests' statistical properties, the item reliability of most tests was satisfactory or

better. All but six tests had alpha reliabilities above .60. The mean reliability was .71 and the test with

the highest reliability had an alpha value of .86.

Mental Math/Estinmtion.tests. Two distinct rationales lay behind the other administered posttest. First,

several of the computer programs used in many of these classes focused on rapid solution to basic math



facts. Many of these were presented in an arcade-game format. It seemed appropriate to test students'

ability to do rapid mental arithmetic, for example by presenting each problem for a fixed limited number

of seconds. Secondly, competence in producing round-number estimates of answers, although not as

much a part of the standard mathematics curriculum as mathematics educators recommend, also seemed

appropriately measured by an canny administered test. These two goals were combined in a common

test given to all pairs. Teachers presented each problem visually on a "flip chart," each one for 10

seconds plus 5 seconds between pitsentations. The test contained seven mental mathematics items and

13 estimation tasks (and a practice problem for each part). Two versions of the mental math portion of

the test were usedone for grades 5 and 6 and the other for grades 7 and 8. The same estimation items

were used for all grade levels. Appendix B contains the items in the Grade 7-8 version of this test.

The orally administered test was also a "fill-in," and in the estimation part, "double" credit was

given for optimal estimates. Scores on the mental math subtest averaged about 30% and, with the

double-credit scoring, the average estimation score was roughly 55%. Mental math and estimation

subscales correlated .4 with each other on the individual level and among classes. But because mental

computation and estimation arc different skills, we treat them as separate dependent variables along with

the Stanford computation test, the Stanford applications test, and the curriculum-specific test.

Correlations among the five posttest raw scores are substantial, although the unreliability of the

short mental math test produces attenuated statistics. Table 2 shows the mean student-level correlations

among the 57 pairs of all posttest-posttest correlations. It also shows, in row one, the mean pretest-to-

posttest intercoffelations, using as a pretest variable the simple sum of all pretests for that pair. All

correlations among the pretest total, both Stanford posttests, and the curriculum-specific posttest average

in the range of .49 to .61. Conelations with the mental math and estimation tests are all in the range

.28 to .41.



Pretest Match, and Calculations of Achievement Gains and Effect Sizes. Randomized assignment

of between 30 and 60 students to any one pair of classes does not asswe that the paired classes are in

fact equal in ability, not even when students are initially stratified by test scores, as were students in

many of the schools in this study. Furthermore, the tests used to make assignments of students to classes

were generally not the same tests as used for the nretest. So variations between "maditional" and

"computer" class pretest means even for classes of randomly assignal students would not be unexpected.

Moreover, only a minority of sites actually permitted researcher-accomplished randomization. The

remainder used local manual or disuict-driven computer-based assignment procedures to produce "equal

ability" classes. In fact, quite a few pairs of classes showed pretest differences. Overall, among the 58

pairs over both years, 24 pairs had pretest mean differences of greater than one-qua= of a standard

deviation; 11 of those exceeded one-half of a standard deviation. Moreover, the 24 class pairs

randomized by the researcher were somewhat less likely to show large pretest differences (> 1.251 s.d.)

than were the remaining pairs (38% vs. 45%). In addition, a greater number of large pretest differences

favored the traditional class (i.e., indicated higher achievement levels there) than favored the computer

class (15 vs. 9). So, for all of these reasons, it seemed particularly important to take pretest differences

into account in computing effect sizes.

Consequently, the performance gains accomplished by each student dwing the school year studied

were measured by computing posttest raw scores for that student mg of their own pretest-indicated

performance level. Separate regression equations were calculated for each of the five posttest

measurements usedStanford computation, Stanford applications, curriculum-specific, mental math, and

estimationand separate regressions were computed for class pairs receiving different ;attests or the

same premst but at different grade levels. In year one, for example, the largest pretest group was formed

by 10 pairs of 7th grade students pretested in the Fall with the Advanced version of the Stanford pretest.

Because there were so many combinations of pretests and grade levels in year one, distinct regression

equations were calculated for 20 groups of classes. Most of those were calculated across students in

22



wily we pair of classes (e.g., two 5'th grade students taking the ents). In year two, since only

Stanford pretests were used, group; were fornxd merely by grade level In year one, all pretest

subscales that existed for that particular pretest (e.g., computation, concepts, and/or applications) weir

used as separate predictors for each posttest outaxne measure. In year two, each Stanford sub-test was

regressed only on the corresponding Stanfotd pretest. Parameters of each equation were then applied

to each student in the group's classes yielding a residual posttest score (actual posttest minus posttest

score predicted from the regression equation).

Students who did not have at least one pretest sub-scale were not included in the analysis.

Students who were added to the class during the fast part of the school year (through November) were

included if pretest scores were available for them Students who added later, who changed between

"traditional" and "computer" class sections during the ycar, who left the class prior to the posttest, or

who were absent from any one posttest were excluded from calculations of the effect size for that

posttest, although they were included in descriptive statistics about the class.

Altogether, pretest data mere obtained for 2919 students (combining both years). Of those, at

least one posttest was scored for 89%. Attrie.,m for each specific posttest varied between 14% and 18%.

(One teacher did not administer the mental math/estimation test and one teacher's curriculum-specific

posttest was not scored because of clear evidence of test taking misbehavior.)

For each pair of classes an effect size was calculated for each posttest by computing the

difference in mean residuals between the coMputer and traditional class and dividing that difference by

the pooled raw posttest standard deviation for both classes.



Major Result= Effect Sizes Aar the Study Population. Table 3 gives the mean and standard deviations

of the effect sizes observed for each posttest outcome for the full 58 pairs of classes (actually 57 data

points because one teacher taught two pairs of classes which were combined for the analysis). The table

also provides mean effects for the 50 pairs judged to have implemented the study design satisfactorily,

for the 20 pairs judged to have implemented the design mu faithfully, for the 9 pairs studied during

their second year of using computers as part of the study (one second year teacher was a "traditional"

teacher during year one), for the 24 pairs that inccupwated researcher-controlled student-level

randomization in their design, and for the 29 pairs whose pretest differences between the traditional and

computer classes of the same pair were "minor" (under .25 s.d.).

For the study population as a whole, effect sizes for all five outcome variables were negligibly

different from zero. For all 57 pairs, they ranged from -.02 to +.07. For the satisfactorily implementing

pairs, they ranged from -.07 (mental math) to +.07 (estimation). However, for the 20 most faithful

implementations, the effect size means were somewhat more positive (none was less than zero), ranging

from +.03 to +.18, although only for the estimation outcome was ES > .10.

Teachers in the second year of the study had more success, in terms of effect sizes, than did the

pool of teachers in their first year of the study. However, the teachers continuing for a second year were

not a representative sample of first year participants. And when we compare effect sizes in their second

year classes with those of their own first year classes, the results for the second year clearly show a

decline in effect sizesnot an improvenwnt. (See Table 3.)

When we look at the group of sites where student-level randomization was accomplished under

the researcher's control, we see a more consistently positive set of effect sizes. But, except for the

estimation posttest, for none of the others was ES > .10. And when we examine only those pairs with
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a close pretest match between traditional and computer classes, we see modest departures of effect sizes

from those for the full study population, but in both positive and negative directions.

The final element in Table 3 reports the results of a multiple regression analysis of three of these

methodological factors (all except "second year teachers") on student achievement effect sizes among

the 50 pairs of classes that met our minimal criteria. The numbers shown are predicted effect sizes for

a class-pair having the best of these implementation/design attributes: a faithful implementation (frequent

computer use and no treatment confounding), researcher-controlled student-level randomization, and

minor pretest diffetences. The predicted effect sizes for all achievement outcomes are above nro, and

four of the five are near or above +.10. Still, only one predicted ES is above .20, which is a lower

bound for what might be called a substantively important effect

In summary, for the study population as a whole, even when we take into account that many sites

had weak iriplementations or less than ideal study designs, the overall effect sizes, although generally

above zero for the methodologically superior implementations, are not substantially above zero, except

for the estimations subtest, the outcome variable with the highest standard error. We postpone until later

in this paper a discussion of the implications of these results, but one thing is certainwe cannot

conclude from these results that "computers arc a waste of money." First, the sample, although probably

more representative of the range of actual practice than can be found elsewhere, is still not a

sophisticated national probability sample of teachers and classrooms. Second, 5th through 8th grade

mathematics is only one curricular application of computers. And third, there are other potentially

valuable ways to improve students' understanding of mathematics through computers besides the

typically diskette-based drill-and-practice programs that constitute the most common approach employed

with our study population. Still, on the average, for this population of teachers and students who used

computers as they did, it seems as iffor the group considered as a wholethe use of computers did not

make much difference for the students' perfonnance on tests of mathematics skill and applications.
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Differences in Effect Sizes: Are They Random? Although the mean effect size among these pairs of

classes across five outman variables was fairly close to zero, not all effect sizes were close to zero.

One class pair had an effect size of over +1.00 for four of the five outcome variables, and another class

pair had an effect size below -.60 for three of the five variables. A third pair's effect sizes were +.62

for Stanford computation, +.43 for the curriculum-specific test, and +.63 for the mental math test, but

(negative) -.43 for Stanford applications. The standard deviation of effect sizes ranged from .35 for the

Stanford subtests to .65 for the estimation test.

Effect sizes based on any one pair of classes are subject to a variety of situational effects

independent of the actual effects of instructional experience. Moreover, even if one were to use

randomly, produced test scores, effect sizes computed on the basis of a single pair of classes have a non-

negligible chance of being greater than one-quarter standard deviation. (Using a monte carlo simulation,

I computed effect sizes for this study population based on random test scores, pretest controls, and pre-

and posttests conelated between .4 and .6 and found the typical standard deviation of effect sizes to be

about .27.) Thus, effect sizes for simile class Emig between, say, -.3 and +3 arc hardly meaningful, and

even those in the range of 1.31 to 131 are not statistically significant. However, because the standard

deviation of effect sizes observed was larger than that likely to be obtained by chance, it is plausible that

there are some systematic patterns of effectsthat the variations are not merely due to random

fluctuadons. By combining class pairs that are similar on some characteristic (for example, grade level,

type of software used, frequency of computer use, etc.) we can produce empirically based speculations

about what factors make a difference in the effectiveness of the range of computer-based approaches to

middle grade mathematics instruction employed by the schools in our study population.



Further analyses whh this data will examine seven types of variations kw clues concerning the

differential effects on student achievement of typically employed computer-based approaches to middle

grade mathematics. Those seven categories are (1) school and cmnmunity environments, (2) student

characteristics (including grade level), (3) teacher characteristics, (4) the social organization of computer

INC, (5) curricuhun coverage, (6) computer software, and (7) computer hardware and hardware

organization. For each of these seven categories, there are at least several variables that are plausibly

linked to possible variations in the effectiveness of computer-based instructional programs in

mathematics, over the domain of practice that was studied. For example, take student characteristics.

Do the computer-based approaches that teachers art now using work better with the younger students

in grade 5 or the older ones in grades 7 and 8? What about student ability levelsare the computer-

based approaches now in use better suited for students behind grade level in math achievement or for

their on-grade or above-grade peers? Or take teacher chanwteristics. It is plausible that teachers

responsible for teaching several subjects to a self-contained class may profit by using computer-assisted

instruction more than math specialists. On the other hand, perhaps math specialists make better use of

computer-based tools in the subject that they know best. Again, we emphasize that the questions we

address concern variations in effectiveness in terms of the range of practices actually studied. We cannot

say what effects better-prepared teachers would produce or whether the effects of software more

carefully developed to elicit mathematical understanding would be greater than the effects found for the

software actually in use by the teachers in these 50 pairs of classes.
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TABLE 1

The 48 Pairs of Classes: Grade Levels and Ability Levels

Class' Aby Level Grade Level
(as reported by school) 5th 6th 7th 8th

Top 113 of their school's grade level - 3 4 -
Top and Middle Thirds 1 - - -
Middle Thud - 5 4 1

Heterogeneous 11 4
Kiddie & Lower Thirds 1 1 - 2
Below Average - - 1 3
Lower Mild - 2 3 2
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TABLE 2

Pre- and Post-Tests: Mean Individual-Level Correlations Among Class Pairs (N=57 class pairs)

Pretest (sum of scores)

Stanford Computation

Stanford Applications

Cuniculum Specific

Mental Math

Estimation

S =ford
Computation Applications

Curriculum-
Specific Posttest Mental Math Estimation

.56 .61

.54

.55

.49

.53

.37

.38

.28

.36

.39

.34

.37

.4 1
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TABLE 3

Aggregate aka Sizes

All Pairs
Pairs Kept in Study
Most Faithful Imphunentaticas

Teachers in Second Year
Same Teackis in thdr First Year

Researcher-Randomized at Student
Level

Only minor patest difruences
between tradition! & computer
classes

Stanton' Cuniculum-
computation Applications Specific Posttest Mental Madi Estimation

N* i s.d. ii s.d. I s.d. i s.d. i s.d.
57 +.04 .35 +.04 .35 -.00 .43 -.02 .55 +.07 .6550 +.03 .36 +.04 .36 -.01 .46 -.07 .54 +.07 .6820 +.07 .40 +.03 .46 +.04 .56 +.06 .59 +.18 .77
9 +.11 .32 +.18 .42 -.02 .56 +.01 .32 +.16 .419 +.31 .34 +.13 .40 +.23 .36 +.11 .37 +.32 .90

24 +.06 .35 +.08 .44 +.08 .41 +.10 .60 +.26 .75

29 +.03 .38 +.11 .41 +.02 .46 -.17 .58 +.08 .77

Regression output linear model df=45 +.09
puedkior for the folkswing
condidon:
most-fakhful implementation,
rescinder randomizecl, minor
must difkreme between
traditional and computer classes

+.17 +15 +.01 +.35

*Ws for some posttests are 1 fewer because of occasionally missing data.
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APPENDIX A: Selected Cuniculum-Specific Postmsts
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The square below can be rotated aroundits
center.

a

-
Question: Can it be mtatad so that it looks
like these squares below.

Cimle Yes or No for each one.
If Yes , tall how many degrees it
should be rotated (clockwise).

Yes if."Yes" How many
No degrees .2

Yes if *Yes* How many
No degrees a

Yes if aYee How many
No degrees

Ar

o How many degrees on the Waded& tri
angle?

d How many turning degrees in a tziangle?

8 Round these decimals as specified

a 5.9610 to the nearest 10th

b 4.0019 to the nearest 100th

c 5.595 ta the nearut 100th

a How many degrees?

0 0 0

b How many turning degrees in all?

0

9 Corn Plant

Height in
centimeters

70
60
50
40
30
20
10

Nommumuumm
n11111.111111111111O
111111111111111111111111111111

1111111111111111M111
1111111111111111VAINII
1111111111111111111r411111111111

1111111111111r4111111111111
11110111111/411111111.111

1111111111111111111111111111
0 1 2 3 4 5 6 7 9 10

Weeks

a During which weeks was there the most
growth?

weeks and

b Approximately how tall will the corn
plant be after 9 weeks?

40
CM.



10 Complete those fractions so that they are
less than, but as near to, the value of 1 as
they can be.

a LI
6

9

E

14 Solve these fraction problemc

3 4a ro
7 3

1
10 5

3 1+

11 What size fractionis halfway between these
fractions

3 4a halfway between T and T :

1 3 .b halfway between and .

5 11halfWay between ir sada :

13 You are having 17 people over for a birth-
day party. A 2-liter bottle of soda isenough
for 3 people. Howmany bottles of soda do
you need to buy?

ANSWER

12 Write < , > or = for each pair of fractions
to make a correct statement

13 Two points on this number line have been
marked. What is the value of the point
labelled IC

t I I-

lb

7.5825

ANSWER

lb

7.635

16 You have been hired to program a
chicken-scratch-makingmachine. It can
make two kinds of marks.

It makes a I when you COMMand it to
CHIRP. It makes a when you com-
mand it to CHEEP.

You can also program it to make a pat-
tern of marks by giving a name to a set of
commands. For example,

GOOX (CHIRP CHEEP CHIRP).
Then when you command it to GOOX it

would make I
You can use 0001 in ftiture instruc-

.

lions to the machine. The commands
CHEEP GOOX CHEEP would make

Mill111110 NOINIMEIMI 41MINIIMMI

a Giviei a setaf3 commands that would make

We'll call that GLEEK.

b What is the simplest set of commands
(CHIRPs, CHEEPs, GOOXs, and
GLEEKs) that wouldmake:

41
I.
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Johns Hopkins University National School Year Review
Jordahl I Class ID:

1 Multiply or divide.

a 3.256 -p 100 se.

b .045 0 .03 ) 2.727
z 2.1

5 Write each set of fractions in order fivm
smallest to larpst.

1 2 3a
2 3 IT

IP

3 4 7b To
0 P

.1

2 Jeff loves a ride at the amusement park
G.Illed the Merry Backbreaker. The ride
moves 26 meters per second and thrills 34
people for halfa minute. How many meters
will the ride teavel altogether?

3 Circle all factors of 39 in the grid below.

95 52 114 65 15

27 1 47 139 27

35 26 72 13 1

12 19 139 35 18

1 52 42 63 39

6 Add or subtract and write the answer in
lowest terms.

a 4 3
5 15

7 1
+ T;

8 1
11 2

24

r 3 1 \
5k + 6 Pk-47 T )

4 Circle the prime numbers.

1 8 5 3 11 12 16
19 21 28 4 2 7 13
31 39 18 14 15 30 36
42 9 17 22 23 25 27

8 Express as a terminating or repeating
decimal

42

5
6

48
200



9 Solve these proportions for

48
6-4 a 3

13

4.-

n 30
249 105

n=

n=
-

10 In a map ofa city drawn to scale, 1 inch rep-
resents 2 1

3 miles. If the city's size is a
rectangle 13 I miles by 6 4 miles, how
big is the map?

4.1IMIM -

14 A runner completed the 200 meter race in
22 seconds.

a What was the speed in meters per sec-
ond, to the nearest tenth?

ra/sec

o

b What was the speed in kilometer per
hour to the nearest tenth?

kmilir

11 Express this fraction as a %. If necessary,
round your answer to the nearest tenth of
a percent

23
32

-

12 Arrange the numbers from least to greatest.

0.825
0.8
0.84
5
6

IIMMIIMIIMM, , t f 1=11MM
II *

13 63% of 285 is represented by which for-
mula. Fill in the square next to the cor-
rect one.

285+63 =222.00

63 4- 285 a 221.05

.63 x 285 = 179.55

.63 + 2.85 = .22105

.63 x 2.85 = 1.7955

E
E
NI
E

13
0.82 + 23.706 + 520

124.52 38.081

16 Each of these magazines increased then
circulation between 1980 and 1985 by
20,000 copies. By what percent did each
magazine increase its circulation? Com-
plete the table.

Magazines

Gone Fishing

Reading for Fun

Teen World

Circulation Percent
1980 1985 Immil

40,000

5,000

120,000

60,000

25,000

140,000
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17 A calf increasedin weightikom101t. to1501b.
What percent incream was that?

18 A survey was taken residents of Califbrnia
to determine theirviews on the construction
of a proposed highway. The results of the
survey showed that 31% favored constnic-
tim, 60% opposed construction, and the rest
had no opinitm.

Manly 18 people said they had no opinion,
how many people in all were surveyed?

19 These four sets of numbers follow the
same kind of sequence. (In any sequence,
each number differs from the next in the
same way.)

2 -4 8 32
5 -0. 10 -4 20
1 -4 6 -) 36
2 -4 6 -4 18

These three sets follow a sequence, but not
the same kind ofsequence, as the ones above.

4 -4 7 -0 10
1 -0 5 -4 10
3 -4 6 -4 9

Tell whether each ofthese follows the same
kind ofsequence as the first group. Circle
'Yes' or `No' for sach one.

a 3 6 -4 12

b 2 .4 4 -4 20

a 4 12 -4 24

Yes No

Yes No

Yes No

Now write another set of numbers that
follows this ldnd of sequence.

-4

20 A customer at the health lbod store where
you work wants a mixture of oat and bran
Cereals ina certain ratio. You have to mike
the mixture for him using cereal premixed
in certain other ratios. Show how many
boxes of each premixed dereal would pro-
duce the ordered mixture;

Order
I Premixes

order
48 oz. eats
72 oz. bran

1

premix #1 premix 02

7 oz. bran 5 oz. bran
1 oz. oats 7 oz. oats

N

boxes of premix #1

boxes of premix #2

21

a What is 250% of 600?

b 5% of what number is 100?

44



Johns Hopkins University National School Year Review
P43 Wooldridge Class ID: Name:

1 The manager of p gift shop is ordering
sweatshirt& Each sweatshirt costs $7. She
has budgeted $500. How many can she
order?

sweatshirt...1.1

2 Company Profib

400
350
300
250
200
150
100
so

Week Week Week Week Week Week
1 2 3 4 5 6

During which week did the company make
the lead profit?

I week #

During w4ich week(s) did profit decrease
from the preceding week?

3 mi/hr
20

15

10

5

Iweeks #

Ab.

2 4 6 8 10 minutes

Drasy a graph to show the speed ofa bicycle
going along at 15 iniihr. for 5 minutes and
then coasting to a stop over the next two
minutes.

4

6"
5"
4"
3"
2"
1"

July

1 8 15 22 29 31

Which plant grew more rapidly during
July? Circle one choice below.

A B

Part G . 1 of the large triangle. What
fraction of the large triangle is ....

Part H? I

The shaded part?

6
Who am I?

I am a proper fraction. I am equivalent to
4

. The sum of my numerator and denomi-
nator is 33.

Who am I?

4 5



7
a 4

3
Ti

1
4

3

10

8 Mite >, <, or = in each circle to make
correct statements.

2

5

3

5

7

12

2

2

3

.4
5

10 What is the perimeter
and what is the area?

(The lengths of some sides must be calcu-
lated first)

1

perimettw:

area:

1

2

1
4 ft.

2

ft

sq. ft.

3 ft.

1 ft..

9 Find the missingvalues.

a
2

6
5

2
12 x

3
=

INME.1/

means that the same
number goes in both
squares.

7

12

11 Check the boxes next to the facts that you
need to solve the problem. Then solve.

Problem: How many cans of paint does
Kay need to buy?

- A can of paint will cover 3 +walls
- Each wall is 8 ÷ ft. high.
- Each room has 4 walls.

- Kay must paint 4 rooms.

- It takes Kay 40 minutes to paint each wall.

[]- Kay already has 1 cans of pai

I cans

12 Solve if you have enough information. If
not, tell that fact is missing.=I 12

One program is on TV fbr 88 minutes. It is
interrupted 8 times for commercials? What
fraction of the thne for the program is used
for commercials?



13 Use the numbers below to write prow-
done.

a 3, 24, 6, 12

b 8, 6, 12, 9

9, 2, 6, 3

d 12, 15, 16, 20

1

4111.

1111

.110

MEN= =WNW

le On a circus train, a lion requires 4.5 cubic
meters of sand, a monkey requiTes 10.2
cubic meters. An elephantrequiree as much
space asa monkeyand lion =alined. How
many elephants could be transported if
there are 150 cut* meters of space avail-
able for elephants.

14 John has4 red marbles, 2 blue marbles and
3 black marbles in a bag.

What is the probability (fraction) that the
first marble he pulls out will be black?

Mt is black, what is the probability thatthe
second marble will also be black?

15 Write in order from least to greatest.

8.063, 80.002, 8.603, 80.01, 80.009

17 I have a secret 4-digit decimal number.

Guess my number.

Here are some hintsguesses that were tga
high.or tisalax.

Guesses that were
Too Hjgh

Guesses that were
Too Low

2

1 . 7 4

©08

-,

2

2

...033
. 007 5

. 0 9 8 7

Another Mut: If a digit was correct and in
the correct decimal position (tenths, hun-
dredths, etc.), I put a circle around it.

Guess my number(you can figure it out from
the hints.)

4 7

Your guess



APPENDDC B: Mental Math/Estimation Posuests

(Grade 7-8 Version)

(Reduced to one-fourth normal size)



131

35
+13

25
X15

4

900
X 60

96 16



a
5

7

I

What is the
AVERAGE?

24, 36, 45

6

8

1395
4795

+ 1095



1121j 1

420
370
280
130

+ 50

29 X 31

10 $ 2.28
8.67
7.25
5.92

+ 6.15

x
303

lemalliommINIwr

aNXIIBmaffiiNgiimlial

309,386



161

17
I

14

9 riT,-(---)00 12agr5---

15

3.1 X 4.98 11 .03
X 0.51



18.

20.

1171

19

How many
degrees?

What frac-
tion of the
circle?

What is V

V. I
30 170


